
Package: TULIP (via r-universe)
October 31, 2024

Title A Toolbox for Linear Discriminant Analysis with Penalties

Version 1.0.2

Description Integrates several popular high-dimensional methods based
on Linear Discriminant Analysis (LDA) and provides a
comprehensive and user-friendly toolbox for linear,
semi-parametric and tensor-variate classification as mentioned
in Yuqing Pan, Qing Mai and Xin Zhang (2019)
<arXiv:1904.03469>. Functions are included for covariate
adjustment, model fitting, cross validation and prediction.

Depends R (>= 3.1.1)

License GPL-2

Encoding UTF-8

LazyData true

Imports tensr, Matrix, MASS, glmnet, methods

NeedsCompilation yes

Author Yuqing Pan <yuqing.pan@stat.fsu.edu>, Qing Mai

<mai@stat.fsu.edu>, Xin Zhang <henry@stat.fsu.edu>

Maintainer Yuqing Pan <yuqing.pan@stat.fsu.edu>

Date/Publication 2021-01-04 17:10:06 UTC

Repository https://yuqingxx.r-universe.dev

RemoteUrl https://github.com/cran/TULIP

RemoteRef HEAD

RemoteSha 0b771e74a228909ea4c3d087655d56e1bb36f220

Contents
adjten . 2
adjvec . 4
catch . 6
catch_matrix . 9

1

https://arxiv.org/abs/1904.03469

2 adjten

csa . 11
cv.catch . 12
cv.dsda . 13
cv.msda . 14
cv.SeSDA . 16
dsda . 17
dsda.all . 19
GDS1615 . 21
getnorm . 21
msda . 23
predict.catch . 27
predict.dsda . 28
predict.msda . 29
predict.SeSDA . 30
ROAD . 31
SeSDA . 32
sim.bi.vector . 33
sim.tensor.cov . 34
SOS . 35

Index 37

adjten Adjust tensor for covariates.

Description

Adjusts tensor with respect to covariates to achieve a more accurate performance. Tensor depends
on the covariates through a linear regression model. The function returns the coefficients of covari-
ates in regression and adjusted tensor list for further classifier modeling. It estimates coefficients
based on training data, and then adjusts training tensor. When testing data is provided, the function
will automatically adjust testing data by learned coefficients as well.

Usage

adjten(x, z, y, testx = NULL, testz = NULL, is.centered = FALSE)

Arguments

x Input tensor or matrix list of length N , where N is the number of observations.
Each element of the list is a tensor or matrix. The order of tensor can be any
integer not less than 2.

z Input covariate matrix of dimension N × q, where q < N . Each row of z is an
observation.

y Class label vector of dimention N × 1. For K class problems, y takes values in
{1, · · · , K}.

adjten 3

testx Input testing tensor or matrix list. Each element of the list is a test case. When
testx is not provided, the function will only adjust training data.

testz Input testing covariate matrix with each row being an observation.

is.centered Indicates whether the input tensor and covariates have already been centered by
their within class mean or not. If is.centered is FALSE, the function adjten
will center data by class. If is.centered is TRUE, the function will skip the
centering step.

Details

The model CATCH assumes the linear relationship bewteen covariates and tensor as

X = µk +α×M+1Z+E,

where α is the matrix of estimated coefficient of covariates. The function removes the effects of
covariates on response variable through tensor and obtain X − α×M+1Z as adjusted tensor to fit
tensor discriminant analysis model.

In estimating α, which is the alpha in the package, adjten first centers both tensor and covariates
within their individual classes, then performs tensor response regression which regresses X on Z.

Value

gamma The estimated coefficients of covariates to plug in classifier. gamma is the γk

defined function catch of dimension q×(K−1), where q is the size of covariates
and K is the number of classes.

xres Adjusted training tensor list X − α×M+1Z after adjusting for covariates. The
effect of the covariate is removed.

testxres Adjusted testing tensor list X − α×M+1Z after adjusting for covariates. The
effect of the covariate is removed.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

catch

Examples

n <- 20
p <- 4
k <- 2
nvars <- p*p*p

4 adjvec

x <- array(list(),n)
vec_x <- matrix(rnorm(n*nvars),nrow=n,ncol=nvars)
vec_x[1:10,] <- vec_x[1:10,]+2
z <- matrix(rnorm(n*2),nrow=n,ncol=2)
z[1:10,] <- z[1:10,]+0.5
y <- c(rep(1,10),rep(2,10))
for (i in 1:n){

x[[i]] <- array(vec_x[i,],dim=c(p,p,p))
}
obj <- adjten(x, z, y)

adjvec Adjust vector for covariates.

Description

Adjusts vector with respect to covariates. Vector depends on the covariates through a linear regres-
sion model. The function returns the coefficients of covariates in regression and adjusted predictor
matrix for further classifier modeling. It estimates coefficients based on training data, and then ad-
justs training tensor. When testing data is provided, the function will automatically adjust testing
data by learned coefficients as well.

Usage

adjvec(x, z, y, testx = NULL, testz = NULL, is.centered = FALSE)

Arguments

x Input matrix of dimension N × p, where N is the number of observations and p
is the number of variables. Each row is an observation

z Input covariate matrix of dimension N × q, where q < N . Each row of z is an
observation.

y Class label vector of dimention N × 1. For K class problems, y takes values in
{1, · · · , K}.

testx Input testing matrix. Each row is a test case. When testx is not provided, the
function will only adjust training data.

testz Input testing covariate matrix with each row being an observation.

is.centered Indicates whether the input vector and covariates have already been centered by
their within class mean or not. If is.centered is FALSE, the function adjvec
will center data by class. If is.centered is TRUE, the function will skip the
centering step.

adjvec 5

Details

Similar as CATCH model, assume the linear relationship between vector predictors and covariates
as

X = µk +α× Z+E,

where X is a N × p matrix and α is the matrix of estimated coefficient of covariates. The function
removes the effects of covariates on response variable through vector and obtain X − α × Z as
adjusted predictors to fit MSDA and DSDA model.

Value

gamma The estimated coefficients of covariates to plug in classifier. gamma is similar as
the γk defined function catch of dimension q× (K − 1), where q is the size of
covariates and K is the number of classes.

xres Adjusted training predictor matrix X−α×Z after adjusting for covariates. The
effect of the covariate is removed.

testxres Adjusted testing predictor matrix X−α×Z after adjusting for covariates. The
effect of the covariate is removed.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

adjten

Examples

n <- 50
p <- 200
k <- 2
q <- 2
x <- matrix(rnorm(n*p), n, p)
z <- matrix(rnorm(n*q), n, q)
x[1:20,] <- x[1:20,] + 2
z[1:20,] <- z[1:20,] + 0.5
y <- c(rep(1, 20), rep(2, 30))
obj <- adjvec(x, z, y)

6 catch

catch Fit a CATCH model and predict categorical response.

Description

The catch function solves classification problems and selects variables by fitting a covariate-
adjusted tensor classification in high-dimensions (CATCH) model. The input training predictors
include two parts: tensor data and low dimensional covariates. The tensor data could be matrix as a
special case of tensor. In catch, tensor data should be stored in a list form. If the dataset contains
no covariate, catch can also fit a classifier only based on the tensor predictors. If covariates are
provided, the method will adjust tensor for covariates and then fit a classifier based on the adjusted
tensor along with the covariates. If users specify testing data at the same time, predicted response
will be obtained as well.

Usage

catch(x, z = NULL, y, testx = NULL, testz = NULL, nlambda = 100,
lambda.factor = ifelse((nobs - nclass) <= nvars, 0.2, 1E-03),
lambda = NULL,dfmax = nobs, pmax = min(dfmax * 2 + 20, nvars),
pf = rep(1, nvars), eps = 1e-04, maxit = 1e+05, sml = 1e-06,
verbose = FALSE, perturb = NULL)

Arguments

x Input tensor (or matrix) list of length N , where N is the number of observations.
Each element of the list is a tensor or matrix. The order of tensor can be any
positive integer not less than 2.

z Input covariate matrix of dimension N × q, where q < N . z can be omitted if
covariate is absent.

y Class label. For K class problems, y takes values in {1, · · · , K}.

testx Input testing tensor or matrix list. Each element of the list is a test case. When
testx is not provided, the function will only fit the model and return the clas-
sifier. When testx is provided, the function will predict response on testx as
well.

testz Input testing covariate matrix. Can be omitted if covariate is absent. However,
training covariates z and testing covariates testz must be provided or not at the
same time.

nlambda The number of tuning values in sequence lambda. If users do not specify lambda
values, the package will generate a solution path containing nlambda many tun-
ing values of lambda. Default is 100.

lambda.factor When lambda is not supplied, catch first finds the largest value in lambda which
yields β = 0. Then the minimum value in lambda is obtained by (largest
value*lambda.factor). The sequence of lambda is generated by evenly sam-
pling nlambda numbers within the range. Default value of lambda.factor is
0.2 if N < p and 0.0001 if N > p.

catch 7

lambda A sequence of user-specified lambda values. lambda is the weight of L1 penalty
and a smaller lambda allows more variables to be nonzero. If NULL, then the al-
gorithm will generate a sequence of nlambda many potential lambdas according
to lambda.factor.

dfmax The maximum number of selected variables in the model. Default is the number
of observations N.

pmax The maximum number of potential selected variables during iteration. In middle
step, the algorithm can select at most pmax variables and then shrink part of them
such that the nubmer of final selected variables is less than dfmax. Default is
min(dfmax× 2 + 20, N).

pf Weight of lasso penalty. Default is a vector of value 1 and length p, representing
L1 penalty of length p. Can be mofidied to use adaptive lasso penalty.

eps Convergence threshold for coordinate descent difference between iterations. De-
fault value is 1e-04.

maxit Maximum iteration times for all lambda. Default value is 1e+05.

sml Threshold for ratio of loss function change after each iteration to old loss func-
tion value. Default value is 1e-06.

verbose Indicates whether print out lambda during iteration or not. Default value is
FALSE.

perturb Perturbation scaler. If it is specified, the value will be added to diagonal of
estimated covariance matrix. A small value can be used to accelerate iteration.
Default value is NULL.

Details

The catch function fits a linear discriminant analysis model as follows:

Z|(Y = k) ∼ N(ϕk,ψ),

X|(Z = z, Y = k) ∼ TN(µk +α×̄M+1z,Σ1, · · · ,ΣM).

The categorical response is predicted from the estimated Bayes rule:

Ŷ = arg max
k=1,··· ,K

ak + γT
kZ+ < βk,X−α×M+1Z >,

where X is the tensor, Z is the covariates, ak, γk and α are parameters estimated by CATCH. A
detailed explanation can be found in reference. When Z is not NULL, the function will first adjust
tensor on covariates by modeling

X = µk +α×M+1Z+E,

where E is an unobservable tensor normal error independent of Z. Then catch fits model on the
adjusted training tensor X−α×M+1Z and makes predictions on testing data by using the adjusted
tensor list. If Z is NULL, it reduces to a simple tensor discriminant analysis model.

The coefficient of tensor β, represented by beta in package, is estimated by

min
β2,...,βK

 K∑
k=2

(
⟨βk, [[βk; Σ̂1, . . . , Σ̂M]]⟩ − 2⟨βk, µ̂k − µ̂1⟩

)
+ λ

∑
j1...jM

√√√√ K∑
k=2

β2
k,j1···jM

 .

8 catch

When response is multi-class, the group lasso penalty over categories is added to objective function
through parameter lambda, and it reduces to a lasso penalty in binary problems.

The function catch will predict categorical response when testing data is provided. If testing data is
not provided or if one wishes to perform prediction separately, catch can be used to only fit model
with a catch object outcome. The object outcome can be combined with the adjusted tensor list
from adjten to perform prediction by predict.catch.

Value

beta Output variable coefficients for each lambda, which is the estimation of β in the
Bayes rule. beta is a list of length being the number of lambdas. Each element
of beta is a matrix of dimension nvars× (nclass− 1).

df The number of nonzero variables for each value in sequence lambda.

dim Dimension of coefficient array.

lambda The actual lambda sequence used. The user specified sequence or automatically
generated sequence could be truncated by constraints on dfmax and pmax.

obj Objective function value for each value in sequence lambda.

x The tensor list after adjustment in training data. If covariate is absent, this is the
original input tensor list.

y Class label in training data.

npasses Total number of iterations.

jerr Error flag.

sigma Estimated covariance matrix on each mode. sigma is a list with the ith element
being covariance matrix on ith mode.

delta Estimated delta matrix (vec(µ̂2 − µ̂1), · · · , vec(µ̂K − µ̂1)).

mu Estimated mean array of X.

prior Proportion of samples in each class.

call The call that produces this object.

pred Predicted categorical response for each value in sequence lambda when testx
is provided.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

cv.catch, predict.catch, adjten

catch_matrix 9

Examples

#without prediction
n <- 20
p <- 4
k <- 2
nvars <- p*p*p
x <- array(list(),n)
vec_x <- matrix(rnorm(n*nvars), nrow=n, ncol=nvars)
vec_x[1:10,] <- vec_x[1:10,]+2
z <- matrix(rnorm(n*2), nrow=n, ncol=2)
z[1:10,] <- z[1:10,]+0.5
y <- c(rep(1,10),rep(2,10))
for (i in 1:n){

x[[i]] <- array(vec_x[i,],dim=c(p,p,p))
}
obj <- catch(x,z,y=y)

catch_matrix Fit a CATCH model for matrix and predict categorical response.

Description

Fits a classifier for matrix data. catch_matrix is a special case of catch when each observation
Xi is a matrix. Different from catch takes list as input, data need to be formed in an array to call
the function (see arguments). The function will perform prediction as well.

Usage

catch_matrix(x, z = NULL, y, testx = NULL, testz = NULL, ...)

Arguments

x Input matrix array. The array should be organized with dimension p1 × p2 ×N .
z Input covariate matrix of dimension N × q, where q < N . z can be omitted if

covariate is absent.
y Class label. For K class problems, y takes values in {1, · · · , K}.
testx Input testing matrix array. When testx is not provided, the function will only

fit model. When testx is provided, the function will predict response on testx
as well.

testz Input testing covariate matrix. Can be omitted if there is no covariate.
... Other arguments that can be passed to catch.

Details

The function fits a matrix classifier as a special case of catch. The fitted model and predictions
should be identical to catch when matrix data is provided. Input matrix should be organized as
three-way array where sample size is the last dimension. If the matrix is organized in a list, users
can either reorganize it or use catch directly to fit model, which takes a matrix or tensor list as input
and has the same output as catch_matrix.

10 catch_matrix

Value

beta Output variable coefficients for each lambda. beta is a list of length being the
number of lambdas. Each element of beta is a matrix of dimension (p1× p2)×
(nclass− 1).

df The number of nonzero variables for each value in sequence lambda.

dim Dimension of coefficient array.

lambda The actual lambda sequence used. The user specified sequence or automatically
generated sequence could be truncated by constraints on dfmax and pmax.

obj Objective function value for each value in sequence lambda.

x The matrix list after adjustment in training data. If covariate is absent, this is the
original input matrix.

y Class label in training data.

npasses Total number of iterations.

jerr Error flag.

sigma Estimated covariance matrix on each mode. sigma is a list with the ith element
being covariance matrix on ith mode.

delta Estimated delta matrix (vec(µ̂2 − µ̂1), · · · , vec(µ̂K − µ̂1)).

mu Estimated mean array.

prior Prior proportion of observations in each class.

call The call that produces this object.

pred Predicted categorical response for each value in sequence lambda when testx
is provided.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

catch

Examples

#without prediction
n <- 20
p <- 4
k <- 2
nvars <- p*p
x=array(rnorm(n*nvars),dim=c(p,p,n))
x[,,11:20]=x[,,11:20]+0.3

csa 11

z <- matrix(rnorm(n*2), nrow=n, ncol=2)
z[1:10,] <- z[1:10,]+0.5
y <- c(rep(1,10),rep(2,10))
obj <- catch_matrix(x,z,y=y)

csa Colorimetric sensor array (CSA) data

Description

A dataset collected from a series of CSA experiments to identify volatile chemical toxicants (VCT).
Chemical dyes were exposed to VCT under different concentration conditions and colors of dyes
were recorded to identify the class of VCT. There are two concentration conditions PEL (permissi-
ble exposure level) and IDLH (immediately dangerous to life of health).

Usage

data(csa)

Format

Two lists, PEL and IDLH, and a numeric vector y. Each list contains 147 matrices of dimension
36× 3.

PEL A list of matrices containing the observations after exposure at PEL.

IDLH A list of matrices containing the observations after exposure at IDLH level.

y Class label ranging from 1 to 21.

Details

This dataset is provided in the Supplementary matrial of Zhong (2015). In each concentration case,
there are 147 observations and 21 classes. We reorganize the data into a list to be directly called by
catch. For matrices in the list, each row represents a dye and the three columns correspond to red,
green and blue.

Source

Wenxuan Zhong and Kenneth S. Suslick (2015). "Matrix discriminant analysis with application to
colorimetric sensor array data" Technometrics 57(4), 524–534.

12 cv.catch

cv.catch Cross-validation for CATCH

Description

Performs k-fold cross validation for CATCH and returns the best tuning parameter λ in the user-
specified or automatically generated choices.

Usage

cv.catch(x, z = NULL, y, nfolds = 5, lambda = NULL,
lambda.opt = "min",...)

Arguments

x Input tensor or matrix list of length N , where N is the number of observations.
Each element of the list is a tensor or matrix. The order of tensor can be any
number and not limited to three.

z Input covariate matrix of dimension N × q, where q < N . z can be omitted if
covariate is absent.

y Class label. For K class problems, y takes values in {1, · · · , K}.

nfolds Number of folds. Default value is 5.

lambda User-specified lambda sequence for cross validation. If not specified, the algo-
rithm will generate a sequence of lambdas based on all data and cross validate
on the sequence.

lambda.opt The optimal criteria when multiple elements in lambda return the same mini-
mum classification error. "min" will return the smallest lambda with minimum
cross validation error. "max" will return the largest lambda with the minimum
cross validation error.

... Other arguments that can be passed to catch.

Details

The function cv.catch runs function catch nfolds+1 times. The first one fits model on all data. If
lambda is specified, it will check if all lambda satisfies the constraints of dfmax and pmax in catch.
If not, a lambda sequence will be generated according to lambda.factor in catch. Then the rest
nfolds many replicates will fit model on nfolds-1 many folds data and predict on the omitted
fold, repectively. Return the lambda with minimum average cross validation error and the largest
lambda within one standard error of the minimum.

Value

lambda The actual lambda sequence used. The user specified sequence or automatically
generated sequence could be truncated by constraints on dfmax and pmax.

cvm The mean of cross validation errors for each lambda.

cv.dsda 13

cvsd The standard error of cross validaiton errors for each lambda.

lambda.min The lambda with minimum cross validation error. If lambda.opt is min, then
returns the smallest lambda with minimum cross validation error. If lambda.opt
is max, then returns the largest lambda with minimum cross validation error.

lambda.1se The largest lambda with cross validation error within one standard error of the
minimum.

catch.fit The fitted catchobj object.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

catch

Examples

n <- 20
p <- 4
k <- 2
nvars <- p*p*p
x <- array(list(),n)
vec_x <- matrix(rnorm(n*nvars), nrow=n, ncol=nvars)
vec_x[1:10,] <- vec_x[1:10,]+2
z <- matrix(rnorm(n*2),nrow=n,ncol=2)
z[1:10,] <- z[1:10,]+0.5
y <- c(rep(1,10),rep(2,10))
for (i in 1:n){

x[[i]] <- array(vec_x[i,], dim=c(p,p,p))
}
objcv <- cv.catch(x, z, y=y)

cv.dsda Cross validation for direct sparse discriminant analysis

Description

Choose the optimal lambda for direct sparse discriminant analysis by cross validation.

Usage

cv.dsda(x, y, nfolds = 5, lambda=lambda, lambda.opt="min",
standardize=FALSE, alpha=1, eps=1e-7)

14 cv.msda

Arguments

x An n by p matrix containing the predictors.

y An n-dimensional vector containing the class labels.

nfolds The number of folds to be used in cross validation. Default is 5.

lambda A sequence of lambda’s.

lambda.opt Should be either "min" or "max", specifying whether the smallest or the largest
lambda with the smallest cross validation error should be used for the final clas-
sification rule.

standardize A logic object indicating whether x.matrix should be standardized before per-
forming DSDA. Default is FALSE.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Value

lambda The sequence of lambda’s used in cross validation.

cvm Cross validation errors.

cvsd The standard error of the cross validation errors.

lambda.min The optimal lambda chosen by cross validation.

model.fit The fitted model.

References

Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-
high dimensions. Biometrika, 99, 29-42.

See Also

cv.dsda predict.dsda dsda

cv.msda Cross-validation for DSDA/MSDA through function msda

Description

Performs K-fold cross validation for msda and returns the best tuning parameter λ in the user-
specified or automatically generated choices.

Usage

cv.msda(x, y, model = NULL, nfolds = 5, lambda = NULL,
lambda.opt = "min", ...)

cv.msda 15

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

y Class label. For K class problems, y takes values in {1, · · · , K}.

model Method type. The model argument can be one of 'binary', 'multi.original',
'multi.modified' and the default is NULL. The function supports fitting DSDA
and MSDA models by specifying method type. Without specification, the func-
tion will automatically choose one of the methods. If the response variable is
binary, the function will fit a DSDA model. If the response variable is multi-
class, the function will fit an original MSDA model for dimension p <= 2000
and a modified MSDA model for dimension p > 2000.

nfolds Number of folds. Default value is 5. Although nfolds can be as large as the
sample size (leave-one-out CV), it is not recommended for large datasets. Small-
est value allowable is nfolds=3 for multi.original and multi.modified.

lambda User-specified lambda sequence for cross validation. If not specified, the algo-
rithm will generate a sequence of lambdas based on all data and cross validate
on the sequence.

lambda.opt The optimal criteria when multiple elements in lambda return the same mini-
mum classification error. "min" will return the smallest lambda with minimum
cross validation error. "max" will return the largest lambda with the minimum
cross validation error.

... other arguments that can be passed to msda.

Details

The function cv.msda runs function msda nfolds+1 times. The first one fits model on all data. If
lambda is specified, it will check if all lambda satisfies the constraints of dfmax and pmax in msda.
If not, a lambda sequence will be generated according to lambda.factor in msda. Then the rest
nfolds many replicates will fit model on nfolds-1 many folds data and predict on the omitted
fold, repectively. Return the lambda with minimum average cross validation error and the largest
lambda within one standard error of the minimum.

Similar as msda, user can specify which method to use by inputing argument model. Without
specification, the function can automatically decide the method by number of classes and variables.

Value

An object of class cv.dsda or cv.msda.original or cv.msda.modified is returned, which is a
list with the ingredients of the cross-validation fit.

lambda The actual lambda sequence used. The user specified sequence or automatically
generated sequence could be truncated by constraints on dfmax and pmax.

cvm The mean of cross validation errors for each lambda.

cvsd The standard error of cross validaiton errors for each lambda.

lambda.min The lambda with minimum cross validation error. If lambda.opt is min, then
returns the smallest lambda with minimum cross validation error. If lambda.opt
is max, then returns the largest lambda with minimum cross validation error.

16 cv.SeSDA

lambda.1se The largest value of lambda such that error is within one standard error of the
minimum. This arguement is only available for object cv.msda.original and
cv.msda.modified.

model.fit A fitted cv.dsda or cv.msda.original or cv.msda.modified object for the
full data.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M. (2012), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrica, 99, 29-42.

Mai, Q., Yang, Y., and Zou, H. (2017), "Multiclass sparse discriminant analysis." Statistica Sinica,
in press.

URL: https://github.com/emeryyi/msda

See Also

msda

Examples

data(GDS1615)
x <- GDS1615$x
y <- GDS1615$y
obj.cv <- cv.msda(x=x, y=y, nfolds=5, lambda.opt="max")
lambda.min <- obj.cv$lambda.min
obj <- msda(x=x, y=y, lambda=lambda.min)
pred <- predict(obj,x)

cv.SeSDA Cross validation for semiparametric sparse discriminant analysis

Description

Choose the optimal lambda for semiparametric sparse discriminant analysis by cross validation.

Usage

cv.SeSDA(x, y, nfolds = 5, lambda=NULL, lambda.opt="min",
standardize=FALSE, alpha=1, eps=1e-7)

https://github.com/emeryyi/msda

dsda 17

Arguments

x An n by p matrix containing the predictors.

y An n-dimensional vector containing the class labels.

nfolds The number of folds to be used in cross validation. Default is 5.

lambda A sequence of lambda’s.

lambda.opt Should be either "min" or "max", specifying whether the smallest or the largest
lambda with the smallest cross validation error should be used for the final clas-
sification rule.

standardize A logic object indicating whether x.matrix should be standardized before per-
forming DSDA. Default is FALSE.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Value

transform The transformation functions.

objdsda The output of cross validation from cv.dsda on transformed data.

References

Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-
high dimensions. Biometrika, 99, 29-42.

See Also

cv.dsda SeSDA

dsda Solution path for direct sparse discriminant analysis

Description

Compute the solution path for direct sparse discriminant analysis (DSDA).

Usage

dsda(x, z=NULL, y, testx=NULL, testz=NULL, standardize=FALSE,
lambda=lambda, alpha=1, eps=1e-7)

18 dsda

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

z Input covariate matrix of dimension N × q, where q < N . z can be omitted if
covariate is absent.

y An n-dimensional vector containing the class labels. The classes have to be
labeled as 1 and 2.

testx Input testing matrix. Each row is a test case. When testx is not provided,
the function will only fit the model and return the classifier. When testx is
provided, the function will predict response on testx as well.

testz Input testing covariate matrix. Can be omitted if covariate is absent. However,
training covariates z and testing covariates testz must be provided or not at the
same time.

standardize A logic object indicating whether x should be standardized before performing
DSDA. Default is FALSE.

lambda A sequence of lambda’s. If lambda is missed, the function will automatically
generates a sequence of lambda’s to fit model.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Value

beta Output variable coefficients for each lambda. The first element of each solution
is the intercept.

lambda The sequence of lambda’s used in computing the solution path.

x The predictor matrix in training data.

y The class label in training data.

pred Predicted categorical response for each value in sequence lambda when testx
is provided.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-
high dimensions. Biometrika, 99, 29-42.

dsda.all 19

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y
x=x[which(y<3),]
y=y[which(y<3)]
obj.path <- dsda(x, y=y)

dsda.all Direct sparse discriminant analysis

Description

Performs direct sparse discriminant analysis, with the optimal lambda chosen by cross validation.
The function can perform prediction on test data as well.

Usage

dsda.all(x, y, x.test.matrix=NULL, y.test=NULL, standardize=FALSE,
lambda.opt="min", nfolds=10, lambda=lambda, alpha=1, eps=1e-7)

Arguments

x An n by p matrix containing the predictors.

y An n-dimensional vector containing the class labels 1 and 2.

x.test.matrix The predictors of a testing set. (Optional.)

y.test The class labels of the testing set. (Required if x.test.matrix is supplied, but
otherwise optional.)

standardize A logic object indicating whether x.matrix should be standardized before per-
forming DSDA. Default is FALSE.

lambda.opt Should be either "min" or "max", specifying whether the smallest or the largest
lambda with the smallest cross validation error should be used for the final clas-
sification rule.

nfolds The number of folds to be used in cross validation. Default is 10.

lambda A sequence of lambda’s.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

20 dsda.all

Value

error Testing error if x.test.matrix is supplied.

beta The coefficients of the classification rule corresponding to the optimal lambda
chosen by cross validation.

s The optimal lambda chosen by cross validation.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M., (2012), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrika, 99, 29-42.

See Also

dsda

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y

x=x[which(y<3),]
y=y[which(y<3)]

n<-length(y) ##split the original dataset to a training set and a testing set
n.test<-round(n/3)
set.seed(20120822)
id<-sample(n,n.test,replace=FALSE)
x.train<-x[-id,]
x.test<-x[id,]
y.train<-y[-id]
y.test<-y[id]

set.seed(123)
##perform direct sparse discriminant analysis
obj<-dsda.all(x.train,y.train,x.test,y.test)
obj$error

GDS1615 21

GDS1615 GDS1615 data introduced in Burczynski et al. (2012).

Description

The dataset is a subset of the dataset available on Gene Expression Omnibus with the accession
number GDS1615. The original dataset contains 22283 gene expression levels and the disease
states of the observed subjects. In Mai, Yang and Zou, the dimension of the original dataset was
first reduced to 127 by F-test screening.

Usage

data(GDS1615)

Value

This data frame contains the following:

x Gene expression levels.

y Disease state that is coded as 1,2,3. 1: normal; 2: ulcerative colitis; 3: Crohn’s
disease.

References

M. E. Burczynski, R. L Peterson, N. C. Twine, K. A. Zuberek, B. J. Brodeur, L. Casciotti, V.
Maganti, P. S. Reddy, A. Strahs, F. Immermann, W. Spinelli, U. Schwertschlag, A. M. Slager, M.
M. Cotreau, and A. J. Dorner. (2012), "Molecular classification of crohn’s disease and ulcerative
colitis patients using transcriptional profiles in peripheral blood mononuclear cells". Journal of
Molecular Diagnostics, 8:51–61.

Mai, Q., Zou, H. and Yuan, M. (2012), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrica, 99, 29-42.

Examples

data(GDS1615)

getnorm Direct sparse discriminant analysis

Description

Transform the predictors to achieve normality.

Usage

getnorm(x, y, type="pooled")

22 getnorm

Arguments

x an n dimensional vector containing n observations for one predictor.

y an n-dimensional vector containing the class labels.

type The type of estimator. Two estimators were proposed in Mai & Zou (2015), the
naive estimator and the pooled estimator. The function getnorm() uses the naive
estimator if type="naive", and it uses the pooled estimator if type="pooled". The
default is "pooled". When the naive estimator is used, it is recommended to label
the class with more samples as Class 0.

Value

x.norm Transformed x.

f0 The transformation computed based on observations from Class 0. Not applica-
ble if type="naive".

f1 The transformation computed based on observations from Class 1. Not applica-
ble if type="naive".

mu.hat The sample mean for transformed x from Class 1.

transform The transformation that was actually used to transform x.

References

Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-
high dimensions. Biometrika, 99, 29-42.

Mai, Q. and Zou, H. (2015). Sparse semiparametric discriminant analysis. Journal of Multivariate
Analysis, 135, 175-188.

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y
x<-exp(x[which(y<3),])
y<-y[which(y<3)]

n<-length(y)
n1<-sum(y==1)
n2<-n-n1
n1.test<-round(n1/2)
n2.test<-round(n2/2)
n.test<-n1.test+n2.test
n.train<-n-n.test
id.test<-c(sample(which(y==1),n1.test),sample(which(y==2),n2.test))

p<-ncol(x)
x.train<-x[-id.test,]
y.train<-y[-id.test]
x.test<-x[id.test,]
y.test<-y[id.test]

msda 23

x.norm<-matrix(0,n.train,p)
x.test.norm<-matrix(0,n.test,p)
for(i in 1:p){

obj.norm<-getnorm(x.train[,i],y.train)
x.norm[,i]<-obj.norm$x.norm
x.test.norm[,i]<-obj.norm$transform(x.test[,i])

}

obj<-dsda.all(x.norm,y.train,x.test.norm,y.test)

msda Fits a regularization path of Sparse Discriminant Analysis and pre-
dicts

Description

Fits a regularization path of Sparse Discriminant Analysis at a sequence of regularization parameters
lambda. Performs prediction when testing data is provided. The msda function solves classifica-
tion problem by fitting a sparse discriminant analysis model. When covariates are provided, the
function will first make adjustment on the training data. It provides three models: binary for fit-
ting DSDA model to solve binary classification problems, multi.original and multi.modified
for fitting MSDA model to solve multi-class classification problems. multi.original runs faster
for small dimension case but the computation ability is limited to a relatively large dimension.
multi.modified has no such limitation and works in ultra-high dimensions. User can specify
method by argument or use the default settings.

Usage

msda(x, z=NULL, y, testx=NULL,testz=NULL, model = NULL, lambda = NULL,
standardize=FALSE, alpha=1, nlambda = 100,
lambda.factor = ifelse((nobs - nclass)<= nvars, 0.2, 1e-03), dfmax = nobs,
pmax = min(dfmax * 2 + 20, nvars), pf = rep(1, nvars), eps = 1e-04,
maxit = 1e+06, sml = 1e-06, verbose = FALSE, perturb = NULL)

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

z Input covariate matrix of dimension N × q, where q < N . z can be omitted if
covariate is absent.

y Class labl. This argument should be a factor for classification. For model='binary',
y should be a binary variable with values 1 and 2. For model='multi.original'
or 'multi.modified', y should be a multi-class variable starting from 1.

24 msda

testx Input testing matrix. Each row is a test case. When testx is not provided,
the function will only fit the model and return the classifier. When testx is
provided, the function will predict response on testx as well.

testz Input testing covariate matrix. Can be omitted if covariate is absent. However,
training covariates z and testing covariates testz must be provided or not at the
same time.

model Method type. The model argument can be one of 'binary', 'multi.original',
'multi.modified' and the default is NULL. The function supports fitting DSDA
and MSDA models by specifying method type. Without specification, the func-
tion will automatically choose one of the methods. If the response variable is
binary, the function will fit a DSDA model. If the response variable is multi-
class, the function will fit an original MSDA model for dimension p <= 2000
and a modified MSDA model for dimension p > 2000.

lambda A user supplied lambda sequence. Typically, by leaving this option unspecified
users can have the program compute its own lambda sequence based on nlambda
and lambda.factor. Supplying a value of lambda overrides this. It is better to
supply a decreasing sequence of lambda values than a single (small) value, if
not, the program will sort user-defined lambda sequence in decreasing order
automatically.

standardize A logic object indicating whether x should be standardized before performing
DSDA. Default is FALSE. This argument is only valid for model = 'binary'.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used in DSDA. This argument is only valid for model =
'binary'.

nlambda The number of tuning values in sequence lambda. If users do not specify lambda
values, the package will generate a solution path containing nlambda many tun-
ing values of lambda. Default is 100 for model = 'multi.original' and 50 for
model = 'multi.modified'.

lambda.factor The factor for getting the minimal lambda in lambda sequence, where min(lambda)
= lambda.factor * max(lambda). max(lambda) is the smallest value of lambda
for which all coefficients are zero. The default depends on p (the number of
predictors) and its relationship with N (the number of rows in the matrix of pre-
dictors). For Original MSDA, if N > p, the default is 0.0001, close to zero.
If N < p, the default is 0.2. For Modified MSDA, if p ≤ 5000, the default is
0.2. If 5000 < p ≤ 30000, the default is 0.4. If p > 30000, the default is 0.5.
A very small value of lambda.factor will lead to a saturated fit. It takes no
effect if there is user-defined lambda sequence. This argument is only valid for
multi.original and multi.modified.

dfmax The maximum number of selected variables in the model. Default is the num-
ber of observations N. This argument is only valid for multi.original and
multi.modified.

pmax The maximum number of potential selected variables during iteration. In middle
step, the algorithm can select at most pmax variables and then shrink part of them
such that the nubmer of final selected variables is less than dfmax. Default is
min(dfmax× 2 + 20, N).

msda 25

pf L1 penalty factor of length p. Separate L1 penalty weights can be applied to
each coefficient of θ to allow differential L1 shrinkage. Can be 0 for some vari-
ables, which implies no L1 shrinkage, and results in that variable always being
included in the model. Default is 1 for all variables (and implicitly infinity for
variables listed in exclude). This argument is only valid for multi.original
and multi.modified.

eps Convergence threshold for coordinate descent. Each inner coordinate descent
loop continues until the relative change in any coefficient. Defaults value is
1e-4.

maxit Maximum number of outer-loop iterations allowed at fixed lambda value. De-
fault is 1e6. If models do not converge, consider increasing maxit. This argu-
ment is only valid for multi.original and multi.modified.

sml Threshold for ratio of loss function change after each iteration to old loss func-
tion value. Default is 1e-06. This argument is only valid for multi.original
and multi.modified.

verbose Whether to print out computation progress. The default is FALSE. This argument
is only valid for multi.original and multi.modified.

perturb A scalar number. If it is specified, the number will be added to each diagonal
element of the covariance matrix as perturbation. The default is NULL. This
argument is only valid for multi.original and multi.modified.

Details

The msda function fits a linear discriminant analysis model for vector X as follows:

X|Y = k ∼ N(µk,Σ).

The categorical response is predicted from the Bayes rule:

Ŷ = arg max
k=1,··· ,K

(X− µk

2
)Tβk + log πk.

The parameter model specifies which method to use in estimating β. Users can use binary for
binary problems and binary and multi.modified for multi-class problems. In multi.original,
the algorithm first computes and stores Σ, while it doesn’t compute or store the entire covariance
matrix in multi.modified. Since the algorithm is element-wise based, multi.modified computes
each element of covariance matrix when needed. Therefore, multi.original is faster for low
dimension but multi.modified can fit model for a much higher dimension case.

Note that for computing speed reason, if models are not converging or running slow, consider
increasing eps and sml, or decreasing nlambda, or increasing lambda.factor before increasing
maxit. Users can also reduce dfmax to limit the maximum number of variables in the model.

The arguments list out all parameters in the three models, but not all of them are necessary in apply-
ing one of the methods. See the specific explaination of each argument for more detail. Meanwhile,
the output of DSDA model only includes beta and lambda.

Value

An object with S3 class dsda or msda.original and msda.modified.

26 msda

beta Output variable coefficients for each lambda, which is the estimation of β in the
Bayes rule. beta is a list of length being the number of lambdas. Each element
of beta is a matrix of dimension nvars × (nclass − 1). For model = 'dsda',
beta is a vector of length nvars+ 1, where the first element is intercept.

df The number of nonzero coefficients for each value of lambda.

obj The fitted value of the objective function for each value of lambda.

dim Dimension of each coefficient matrix.

lambda The actual lambda sequence used. The user specified sequence or automatically
generated sequence could be truncated by constraints on dfmax and pmax.

x The input matrix of predictors for training.

y Class label in training data.

npasses Total number of iterations (the most inner loop) summed over all lambda values

jerr Error flag, for warnings and errors, 0 if no error.

sigma Estimated sigma matrix. This argument is only available in object msda.original.

delta Estimated delta matrix. delta[k] = mu[k]-mu[1].

mu Estimated mu vector.

prior Prior probability that y belong to class k, estimated by mean(y that belong to k).

call The call that produced this object

pred Predicted categorical response for each value in sequence lambda when testx
is provided.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M. (2012), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrica, 99, 29-42.

Mai, Q., Yang, Y., and Zou, H. (2017), "Multiclass sparse discriminant analysis." Statistica Sinica,
in press.

URL: https://github.com/emeryyi/msda

See Also

cv.msda, predict.msda

Examples

data(GDS1615)
x<-GDS1615$x
y<-GDS1615$y
obj <- msda(x = x, y = y)

https://github.com/emeryyi/msda

predict.catch 27

predict.catch Predict categorical responses for matrix/tensor data.

Description

Predict categorical responses on new matrix/tensor data given the fitted CATCH model input.

Usage

S3 method for class 'catch'
predict(object, newx, z = NULL, ztest = NULL, gamma = NULL,...)

Arguments

object Input catchobj class object as fitted model.

newx Input adjusted testing tensor or matrix list. Each element of the list is a tensor.
The tensor should of the same dimension as training data.

z Input training covariates matrix. z can be omitted if there is no covariate.

ztest Input testing covariates matrix. ztest can be omitted if there is no covariate.

gamma Coefficients of covariates obtained from adjten. gamma is NULL if there is no
covariate.

... Other arguments that can be passed to predict.

Details

The function fits LDA model on selected discriminant vectors. Call predict or predict.catch to
perform predictions.

There are two ways to make predictions. One way is to directly predict at the same time as fitting
model by catch since predict.catch has already been embedded in catch and it will predicts
response when testing data is provided. The other way is to first use adjten to adjuste tensor and
catch to fit model. predict.catch will take the input adjusted tensor list newx, covariate coeffi-
cient gamma from adjten and the fitted model from catch to perform prediction. The prediction is
identical to providing catch testing data.

Value

Predicted response of newx for each lambda in model object.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Pan, Y., Mai, Q., and Zhang, X. (2018) Covariate-Adjusted Tensor Classification in High-Dimensions,
arXiv:1805.04421.

28 predict.dsda

See Also

catch, adjten

Examples

#generate training data
n <- 20
p <- 4
k <- 2
nvars <- p*p*p
x <- array(list(),n)
vec_x <- matrix(rnorm(n*nvars),nrow=n,ncol=nvars)
vec_x[1:10,] <- vec_x[1:10,]+2
z <- matrix(rnorm(n*2),nrow=n,ncol=2)
z[1:10,] <- z[1:10,]+0.5
y <- c(rep(1,10),rep(2,10))
for (i in 1:n){

x[[i]] <- array(vec_x[i,],dim=c(p,p,p))
}

#generate testing data
newx <- array(list(),n)
vec_newx <- matrix(rnorm(n*nvars),nrow=n,ncol=nvars)
vec_newx[1:10,] <- vec_newx[1:10,]+2
newz <- matrix(rnorm(n*2),nrow=n,ncol=2)
newz[1:10,] <- newz[1:10,]+0.5
for (i in 1:n){

newx[[i]] <- array(vec_newx[i,],dim=c(p,p,p))
}

#Make adjustment and fit model
obj <- adjten(x, z, y, newx, newz)
fit <- catch(x, z, y)
#Predict
pred <- predict(fit, obj$testxres, z, newz, obj$gamma)

#The adjusting, fitting model and predicting step can also be completed
#by one command.
pred <- catch(x, z, y, newx, newz)$pred

predict.dsda Prediction for direct sparse discriminant analysis

Description

Predict the class labels by direct sparse discriminant analysis.

Usage

S3 method for class 'dsda'
predict(object, newx, z=NULL, ztest=NULL, gamma=NULL,...)

predict.msda 29

Arguments

object An object returned by dsda or msda with binary setting.

newx An n by p matrix containing the predictors.

z Input training covariates matrix. z can be omitted if there is no covariate.

ztest Input testing covariates matrix. ztest can be omitted if there is no covariate.

gamma Coefficients of covariates obtained from adjvec. gamma is NULL if there is no
covariate.

... Other arguments that can be passed to predict.

Value

pred The the predicted class labels.

References

Mai, Q., Zou, H. and Yuan, M. (2013), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrika, 99, 29-42.

See Also

dsda, dsda.all, predict.msda

predict.msda Predict categorical responses for vector data.

Description

Predict categorical responses on new vector data given the fitted DSDA/MSDA model input.

Usage

S3 method for class 'msda'
predict(object, newx, z = NULL, ztest = NULL, gamma = NULL,...)

Arguments

object Fitted model object from msda. The model object can be anyone of binary,
multi.original and multi.modified.

newx The matrix of new values for x at which predictions are to be made. If covariates
exist, then newx should be adjusted matrix.

z Input training covariates matrix. z can be omitted if there is no covariate.

ztest Input testing covariates matrix. ztest can be omitted if there is no covariate.

gamma Coefficients of covariates obtained from adjvec. gamma is NULL if there is no
covariate.

... Other arguments that can be passed to predict.

30 predict.SeSDA

Details

The function fits LDA model on selected discriminant vectors. Call predict or predict.msda to
perform prediction. When covariates exist, users could first call adjvec to make adjustment and
obtain obtain gamma. The fitted model from msda should also takes adjusted vector as input. The
newx in predict.msda shoudl be adjusted vector as well.

Value

Predicted class label(s) at the entire sequence of the penalty parameter lambda used to create the
model.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M. (2012), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrica, 99, 29-42.

Mai, Q., Yang, Y., and Zou, H. (2017), "Multiclass sparse discriminant analysis." Statistica Sinica,
in press.

Pan, Y., Mai, Q., and Zhang, X. (2018), "Covariate-Adjusted Tensor Classification in High-Dimensions."
Journal of the American Statistical Association, accepted.

See Also

msda

Examples

data(GDS1615)
x<-GDS1615$x
y<-GDS1615$y
obj <- msda(x = x, y = y)
pred<-predict(obj,x)

predict.SeSDA Prediction for semiparametric sparse discriminant analysis

Description

Predict the class labels by semiparametric sparse discriminant analysis.

Usage

S3 method for class 'SeSDA'
predict(object, x.test,...)

ROAD 31

Arguments

object An object returned by SeSDA.

x.test An n by p matrix containing the predictors.

... Other arguments that can be passed to predict.

Value

pred The the predicted class labels.

References

Mai, Q., Zou, H. and Yuan, M. (2013), "A direct approach to sparse discriminant analysis in ultra-
high dimensions." Biometrika, 99, 29-42.

See Also

dsda, SeSDA

ROAD Solution path for regularized optimal affine discriminant

Description

Compute the solution path for regularized optimal affine discriminant (ROAD).

Usage

ROAD(x,y,standardize=FALSE,lambda=NULL,eps=1e-7)

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

y An n-dimensional vector containing the class labels. The classes have to be
labeled as 1 and 2.

standardize A logic object indicating whether x should be standardized before performing
ROAD. Default is FALSE.

lambda A sequence of lambda’s. If lambda is missed, the function will automatically
generates a sequence of lambda’s to fit model.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Details

The function obtains the solution path of ROAD through dsda.

32 SeSDA

Value

beta Output variable coefficients for each lambda.

lambda The sequence of lambda’s used in computing the solution path.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q. and Zou, H. (2013), "A note on the connection and equivalence of three sparse linear
discriminant analysis methods." Technometrics, 55, 243-246.

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y
x=x[which(y<3),]
y=y[which(y<3)]
obj.path <- ROAD(x, y)

SeSDA Solution path for semiparametric sparse discriminant analysis

Description

Compute the solution path for semiparametric sparse discriminant analysis.

Usage

SeSDA(x,y,standardize=FALSE,lambda=NULL,alpha=1,eps=1e-7)

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

y An n-dimensional vector containing the class labels. The classes have to be
labeled as 1 and 2.

standardize A logic object indicating whether x should be standardized after transformation
but before fitting classifier. Default is FALSE.

lambda A sequence of lambda’s. If lambda is missed or NULL, the function will auto-
matically generates a sequence of lambda’s to fit model.

alpha The elasticnet mixing parameter, the same as in glmnet. Default is alpha=1 so
that the lasso penalty is used.

sim.bi.vector 33

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Value

transform The tranformation functions.

objdsda A DSDA object fitted on transformed data.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q., Zou, H. and Yuan, M. (2013). A direct approach to sparse discriminant analysis in ultra-
high dimensions. Biometrika, 99, 29-42.

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y
x=x[which(y<3),]
y=y[which(y<3)]
obj.path <- SeSDA(x,y)

sim.bi.vector Simulate data

Description

Simulate a binary data set with vector predictor.

Usage

sim.bi.vector(tesize = 100)

Arguments

tesize Number of observations in testing data.

Details

The function simulates a data set with p = 500. Response are binary.

34 sim.tensor.cov

Value

x Simulated vector predictor.

testx Simulated testing vector predictor.

y Response corresponding to x.

testy Response corresponding to testx.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

sim.tensor.cov Simulate data

Description

Simulate a data set with tensor predictor and covariates.

Usage

sim.tensor.cov(tesize = 100)

Arguments

tesize Number of observations in testing data.

Details

The function simulates a data set with 10 × 10 × 10 tensor and covariate being a two-dimensional
vector. Response are binary.

Value

x Simulated tensor predictor.

z Simulated covariate.

testx Simulated testing tensor predictor.

testz Simualted testing covariate.

vec_x Vectorization of x.

vec_testx Vectorization of testx.

y Response corresponding to x and z.

testy Response corresponding to testx and testz.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

SOS 35

SOS Solution path for sparse discriminant analysis

Description

Compute the solution path for sparse optimal scoring (SOS).

Usage

SOS(x,y,standardize=FALSE,lambda=NULL,eps=1e-7)

Arguments

x Input matrix of predictors. x is of dimension N × p; each row is an observation
vector.

y An n-dimensional vector containing the class labels. The classes have to be
labeled as 1 and 2.

standardize A logic object indicating whether x should be standardized before performing
SOS. Default is FALSE.

lambda A sequence of lambda’s. If lambda is missed, the function will automatically
generates a sequence of lambda’s to fit model.

eps Convergence threshold for coordinate descent, the same as in glmnet. Default is
1e-7.

Details

The function obtains the solution path of sparse optimal scoring model through dsda.

Value

beta Output variable coefficients for each lambda.

lambda The sequence of lambda’s used in computing the solution path.

Author(s)

Yuqing Pan, Qing Mai, Xin Zhang

References

Mai, Q. and Zou, H. (2013), "A note on the connection and equivalence of three sparse linear
discriminant analysis methods." Technometrics, 55, 243-246.

36 SOS

Examples

data(GDS1615) ##load the prostate data
x<-GDS1615$x
y<-GDS1615$y
x=x[which(y<3),]
y=y[which(y<3)]
obj.path <- SOS(x, y)

Index

∗ datasets
csa, 11
GDS1615, 21

adjten, 2, 3, 5, 8, 27, 28
adjvec, 4, 29, 30

catch, 3, 5, 6, 7–10, 12, 13, 27, 28
catch_matrix, 9, 9
csa, 11
cv.catch, 8, 12, 12
cv.dsda, 13
cv.msda, 14, 15, 26
cv.SeSDA, 16

dsda, 17, 20, 29, 31, 35
dsda.all, 19, 29

GDS1615, 21
getnorm, 21

msda, 15, 16, 23, 30

predict, 30
predict.catch, 8, 27, 27
predict.dsda, 28
predict.msda, 26, 29, 29, 30
predict.SeSDA, 30

ROAD, 31

SeSDA, 31, 32
sim.bi.vector, 33
sim.tensor.cov, 34
SOS, 35

x (GDS1615), 21

y (GDS1615), 21

37

	adjten
	adjvec
	catch
	catch_matrix
	csa
	cv.catch
	cv.dsda
	cv.msda
	cv.SeSDA
	dsda
	dsda.all
	GDS1615
	getnorm
	msda
	predict.catch
	predict.dsda
	predict.msda
	predict.SeSDA
	ROAD
	SeSDA
	sim.bi.vector
	sim.tensor.cov
	SOS
	Index

